科研进展

宁波材料所在质子交换膜电解水机理研究方面取得重要进

氢能被视为推动可再生能源发电规模化的最佳能源载体,而电解水制氢则是实现此目标的重要途径之一。在众多电解水制氢技术中,质子交换膜电解水技术(Proton Exchange Membrane,PEM)具有装置紧凑(≤0.3 m2)、电流密度大(>1 A cm-2)、产氢纯度高(≥99.99%)、动态响应快(毫秒级)等诸多优势。然而,PEM中阳极氧析出反应(Oxygen Evolution Reaction,OER)存在电子转移数多、动力学缓慢、过电位高等问题,制约了水分解反应的整体效率。要解决这一问题,必须从反应机理层面出发,基于OER反应的本质,合理设计催化剂材料结构。

2024-10-30

Nature Nanotechnology|宁波材料所在电化学原位合成过氧化物方面取得进展

碱土金属过氧化物(MO2,包括CaO2、SrO2和BaO2)作为过氧化氢(H2O2)的衍生物,同样具有强氧化性,但其作为固体物质,相比于H2O2具有更稳定的化学性质,在漂白、废水处理、消毒和精细化学品合成等领域应用广泛。目前,工业上主要采用高浓度H2O2与碱土金属氢氧化物反应来生产MO2,这种传统的化学合成方法存在着原料(H2O2)运输危险、生产成本高、产物纯度低等问题,直接制约了MO2的普及和发展。近些年来,为避免高浓度H2O2运输和储存引起的风险,研究人员提出了电化学在线生产的方法,即利用电化学二电子氧还原反应(2e- ORR)在线生产H2O2,无需运输即可直接用于化学合成MO2。然而,由于电化学合成的H2O2在累积过程中易发生自分解反应,导致生产效率较低。

2024-10-30

宁波材料所在碱性海水电解制氢长寿命、耐腐蚀阳极方面取得重要进展

通过电解水制取绿氢能实现零碳排放,是推动“碳达峰、碳中和”进程的重要策略之一。电解水技术高度依赖稀缺的纯水资源,限制了其进一步的发展。海水作为世界上储量最丰富的水资源,将其作为电解制氢的原料替代纯水,能够拓宽电解水的水质要求,从而解决电解水的水源问题。然而,海水体系中大量的氯离子会对阳极造成严重腐蚀,降低阳极及电解槽的使用寿命。以往的研究表明,通过电极表面吸附氧阴离子(硫酸根、磷酸根、硝酸根等)来排斥氯离子,可提高阳极寿命(约1000小时),但仍无法满足工业化需求。

2024-09-24

AM宁波材料所建所20周年专刊】原子级分散金属催化剂在CO2高值转化领域中的应用

近60年来,大气CO2浓度陡然上升,过量排放的CO2引发了海水酸化、冰川融化、海平面上升等一系列环境问题,严格控制碳排放量已成为国内外政府与各级环境组织关注的焦点。与此同时,CO2又是一种廉价、无毒且可再生的C1资源,将其转化为高附加值的碳基化学品,如烃、醇、酰胺、碳酸酯和羧酸等,减少对化石资源的过度依赖,是解决上述环境问题、实现可持续发展的有效手段。与CO、HCOOH、CH3OH、CH4等C1产物相比,C2+产品具有更高的能量密度和经济价值,是CO2高值转化领域追求的目标。然而,CO2基C2+产品的制备更具挑战,对催化剂也提出了更高要求。因此,高效催化剂的设计与可控制备是当前面临的主要问题。

2024-06-12

AM宁波材料所建所20周年专刊】液态有机储氢体系氢载体和催化剂的进展

液态有机储氢技术具有高储氢密度、高安全性、可跨洋运输和长周期储存等优点,是当前研究的热点,也是最具发展潜力的氢气储运技术之一。为了提高能源效率、提升催化剂寿命、降低催化剂成本和系统复杂性,科学家开发了多种液态有机氢载体,研制了多样化的热、光、电催化的均相和非均相催化剂,并构建了储/放氢为一体的反应体系。

2024-06-03

\r\n