
人才队伍
吴巍 研究员
研究员,博士生导师。获得国家级和中科院海外引才项目支持。2010年6月本科毕业于中南大学粉末冶金研究院材料化学专业,同年9月进入中国科学院宁波材料技术与工程研究所攻读硕博连读项目,于2015年6月获材料物理与化学博士学位。2015年至2017年在美国马里兰大学能源研究中心从事博士后研究工作,师从国际知名电化学专家Eric Wachsman教授。2017年加入美国能源部直属的爱达荷国家实验室(Idaho National Laboratory, INL),任职于能源与环境科学技术部,并于2023年晋升为资深科学家,同时担任电化学转化团队负责人。
吴巍博士长期致力于高温电化学处理与电催化领域的前沿研究,在基础研究和工程应用方面均取得突出成果。作为项目负责人(PI)或共同负责人(Co-PI),先后主持12项美国能源部(DOE)及工业界资助项目,累计获得科研经费逾1370万美元。研究领域主要聚焦于先进设计与制造(Advanced Design and Manufacturing, ADM)以及集成能源系统(Integrated Energy Systems, IES),在天然气提质转化、高温水电解制氢、固体氧化物电池/电堆制造、二氧化碳电化学转化、氨电合成及环境催化等方向取得系列创新性成果。
吴巍博士曾担任美国能源部两个氢能领域重要联盟的技术指导委员会委员:能源材料网络(Energy Materials Network, EMN)下属的HydroGEN联盟,以及能源效率和可再生能源办公室(EERE)办公室下属的H2NEW联盟。截至2025年1月,已在Nature、Nature Communications、Advanced Materials、Advanced Energy Materials、Advanced Functional Materials等国际顶级期刊发表论文40余篇,其中第一/通讯作者论文23篇,论文总被引超过3000次,H指数28。在国际重要学术会议上作特邀报告20余次。申请发明专利13项(包括12项美国专利和1项中国专利),其中7项已获授权,并参与撰写英文专著1部。
吴巍博士现任Nature Energy、Chemical Engineering Journal、Advanced Materials、Advanced Energy Materials、Energy & Environmental Science等20余个国际权威期刊的审稿人。2025年1月,以"团队人才"研究员身份全职加入中国科学院宁波材料技术与工程研究所。
研究方向
高附加值化学品中温电化学合成技术;
能源转化与利用;
新型功能陶瓷材料设计、制备与循环;
纳米催化材料
代表性论文
- W. Wu*, et al, Advancements in sustainable proton-conducting electrochemical cells: Direct recycling of sintered nickel oxide-doped barium zirconate half cells. Resources, Conservation and Recycling,2024, 209:107782.
- W. Wu*, et al, Root Cause Analysis of Degradation in Protonic Ceramic Electrochemical Cells with Interfacial Electrical Sensors using Data-driven Machine Learning. Advanced Science, 2023, doi.org/10.1002/advs.202304074.
- Bian. W⸸, W. Wu⸸*, B. Wang, Tang. W, M. Zhou, C. Jin, H. Ding, W. Fan, Y. Dong*. J. Li*, D. Ding*. Revitalizing interface in protonic ceramic cells by acid etch. Nature. 2022; DOI: 10.1038/s41586-022-04457-y.
- Wu. W, Y. Zhang, D. Ding, T. He. A High-Performing Direct Carbon Fuel Cell (DCFC) with a 3D Architectured Anode Operated Below 600oC. Advanced Materials, 30 (2018) 1704745.
- W. Wu, W. Guan, G. Wang, F. Wang, W. Wang. In-Situ Investigation of Quantitative Contributions of the Anode, Cathode, and Electrolyte to the Cell Performance in Anode-Supported Planar SOFCs. Advanced Energy Material 4, doi:10.1002/aenm.201400120 (2014).
- W. Wu*, et al, Root Cause Analysis of Degradation in Protonic Ceramic Electrochemical Cells with Interfacial Electrical Sensors using Data-driven Machine Learning. Advanced Science, 2023, doi.org/10.1002/advs.202304074.
- W. Wu, L. Wang, H. Hu, J, Gomez, C. Orme, J. Li, D. Ding. Electrochemical Engineered, Highly Energy-Efficient Conversion of Ethane to Ethylene and Hydrogen below 550 oC in a Protonic Ceramic Electrochemical Cell. ACS Catalysis. 11 (19), 12194-12202, 2021.
- Wang. M, Wu. W*, Lin. Y, et al., Improved Solid-State Reaction Method for Scaled-Up Synthesis of Ceramic Proton-Conducting Electrolyte Materials. ACS Applied Energy Materials, 2023, doi.org/10.1021/acsaem.3c01423.
- Feng. W, Wu. W* et al. "Mathematical Model-Assisted Ultrasonic Spray Coating for Scalable Production of Large-Sized Solid Oxide Electrochemical Cells." ACS Applied Materials & Interfaces, 2023, doi.org/10.1021/acsami.3c04208.
- W. Bian⸸, W. Wu⸸*, Y. Gao, J. Gomez, H. Ding, M. Zhou, D. Ding*, Regulation of Cathode Mass and Charge Transfer by Structural 3D Engineering for Protonic Ceramic Fuel Cell at 400° C. Advanced Functional Materials. 2021:202102907.
- Bian. W⸸, W. Wu⸸*, C. Orme, H. Ding, M. Zhou, D. Ding*. Dual 3D Ceramic Textile Electrodes: Fast Kinetics for Carbon Oxidation Reaction and Oxygen Reduction Reaction in Direct Carbon Fuel Cells at Reduced Temperatures. Advanced Functional Materials. 2020;30(19):1910096.
- H. Ding, W. Wu*, C. Jiang, Y. Ding, W. Bian, B. Hu, et al. Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production. Nature communications. 2020;11(1):1-11.
- W. Wu, H. Ding, Y. Zhang, Y. Ding, Y, Katiyar, P. Majumdar, T. He, D. Ding. 3D Self-Architectured Steam Electrode Enabled Efficient and Durable Hydrogen Production in A Proton Conducting Solid Oxide Electrolysis Cell at Temperatures Lower than 600oC. Advanced Science, 11 (2018) 1870166.
相关信息
邮箱:wuwei@nimte.ac.cn
手机:13736082445
办公室:新能源所E301